
Validations Engine Documentation
Release 1.0.0

QuintoAndar

Dec 01, 2022

CONTENTS

1 Purpose 3

2 Structure and the engine core concepts 5
2.1 Navigation . 5

Python Module Index 11

Index 13

i

ii

Validations Engine Documentation, Release 1.0.0

Made with by the Data Engineering team from QuintoAndar.

Engine for creating and running validation for general purposes

CONTENTS 1

https://github.com/quintoandar/

Validations Engine Documentation, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

PURPOSE

This automation engine was conceived to simulate key communication/integration lines between services that compose
the core jobs of the data engineering pipeline at QuintoAndar, to guarantee there is no failures in the pipeline (and early
catch eventual failures). But it can execute validations for general purposes.

3

Validations Engine Documentation, Release 1.0.0

4 Chapter 1. Purpose

CHAPTER

TWO

STRUCTURE AND THE ENGINE CORE CONCEPTS

This engine is composed by the Executors and the ValidationSuites.

Executors

Executors are responsible for executing all the respective validation suites that inherit them. A suite can inherit a custom
executor or the BaseValidationSuitesExecutor. The executor may contain default and generic code and tests for a
group of suites. For example, we may have one executor with features for validating a group of Databases and another
for validating some APIs.

Validation Suites

A validation suite works like a Python unit test class. Once you define the validation methods (following the name
pattern), these methods will be run by the engine.

Inside the validation suite class, you may implement into the validation methods the validations you want to perform.
You can implement a custom validation inside your suite or if it is a common validation you may want to generalize it
and use a custom executor like DatabaseValidationSuitesExecutor for sharing the same validation among other
suites that inherits it. Every suite must inherit from an executor, in order to be parsed and run. So it should inherit from
the BaseValidationSuitesExecutor or from a custom one (that inherits from the base executor).

The validation_* methods inside the suite and inside the executor classes will run automatically by the validation
engine.

2.1 Navigation

2.1.1 Getting Started

Validations Engine depends on Python 3.7.6+.

Python Package Index hosts reference to a pip-installable module of this library, using it is as straightforward as includ-
ing it on your project’s requirements.

pip install validations-engine

Or after listing validations-engine in your requirements.txt file:

pip install -r requirements.txt

5

https://pypi.org/project/validations-engine/

Validations Engine Documentation, Release 1.0.0

Adding a new validation suite

Check here the instructions to create a new validation suite.

Discovering Validations Engine

Click on the following links to open the examples:

#1 Example

2.1.2 About

Motivation

During the daily data engineering pipeline execution, may occur some problems related to:

• Network access (like VPC, peering, etc).

• API failures.

• Database connections failures (access, authentication, networking related errors).

• Failures in Python requirements installing (via init scripts) and its dependencies installing.

• DML errors.

• and the list goes on. . . .

Eventually, internal modifications in service’s platform (infra, services, etc) can lead to bugs and failures in the ELT
daily runs. Also, eventual external factors (like a lib dependency update) may also lead to such problems. And we
definitely cannot expect that everything will run accordingly on the official daily executions.

It is pretty important therefore to have internal processes to guarantee (as much as we can) that the pipelines will run
without failures.

2.1.3 API Specification

validations_engine package

Submodules

Slack communications module.

class validations_engine.SlackHelper.SlackHelper

Bases: object

Slack Helper class.

static build_slack_payload(error_messages: List[Tuple[str, str]])→ Dict[str, Dict[str, Any]]
Builds the message payload from the error messages.

static send_slack_errors(error_messages: List[Tuple[str, str]])→ bool
Sends errors messages to Slack (channels).

Returns
flag stating if messages were sent or not

Suites base executor.

6 Chapter 2. Structure and the engine core concepts

https://github.com/quintoandar/validations-engine/tree/main/examples
https://github.com/quintoandar/validations-engine/blob/main/examples/example.py

Validations Engine Documentation, Release 1.0.0

class validations_engine.base_validation_suites_executor.BaseValidationSuitesExecutor(auth:
Op-
tional[Dict[str,
Any]]
=
None)

Bases: object

Validation suites executors abstract class.

SLACK_MSG_HEADER = ''

get_suite_validation_failures_messages()→ List[Tuple[str, str]]
Return the errors list.

get_suite_validation_has_failures()→ bool
Returns the bool state indicating if there were failures.

run()→ None
Main method executed by the validation suites (E.g.: FooValidationSuite).

It will run every method prefixed with validation_ defined in the validation
suite class. And the default ones defined in the executor class.

Only stops when all validations are finished.

Validations Engine main class.

class validations_engine.validations_engine.ValidationsEngine(validations_suites_root_path: str)
Bases: object

The Validator engine main file.

This class is responsible for parsing all validation suites and running
its validation methods individually.

handle_errors()→ None
Ensures (raises) a failure in the end of all validations.

load_validation_suites(validations_suites_root_path: str)→ List[BaseValidationSuitesExecutor]
Import suites’ modules and loads a list with their classes.

Get each suite file, imports it as a python module and loads the
suite class.

run_validation_suites()→ None
The main method.

Runs all validations from Suite classes and raises an error if some
validation failed.

set_connections_auth_params(connections_auth_params: Dict[str, Any])→ None
Setter of connections_auth_params.

set_suites_have_failures(param: bool, messages: Optional[List[str]] = None)→ None
Merges previous state with new one.

2.1. Navigation 7

Validations Engine Documentation, Release 1.0.0

Module contents

Top-level package for validations_engine.

2.1.4 Adding a new validation suite

Creating a new validation context (executor)

If you want to create a validation for a new category (like the categories API or Database), you may first create an execu-
tor. The executor must inherit from BaseValidationSuitesExecutor and wrap common validation that validation
suites may share. And this executor must be inherited by each validation suite you create in this context. E.g.:

from validations_engine.base_validation_suites_executor import␣
→˓BaseValidationSuitesExecutor

class DatabasesValidationSuitesExecutor(BaseValidationSuitesExecutor):

def __init__(self, auth):
"""
:param auth: Authentication dictionary with DB auth needed for connecting in␣

→˓your test.
You should define it after calling instantiating the ValidationsEngine().
After this, it is automatically filled in this executor by the Validation␣

→˓Engine.
"""
super().__init__()
self.auth = auth

def method_one(self):
some code you use in this executor
pass

def validation_foo(self):
some validation which all the suites of this executor will have
pass

Creating a new validation suite

If you want to validate something of an existing context, like add validations for a new database type, you may only
create a new validation suite file.

1. Add the new Validation Suite class file in your validation suites’ root path.

2. Inherit it from some executor or from the base executor.

3. Create the validations inside each method prefixed with validate_.

E.g.:

imports suppressed
class MyCoolValidationSuite(APIValidationSuitesExecutor):

Every suite must inherit a validation suites executor in order to be run.

def validate_auth(self):
(continues on next page)

8 Chapter 2. Structure and the engine core concepts

Validations Engine Documentation, Release 1.0.0

(continued from previous page)

checking if the API is authenticating and returning data as expected
conn = self.api_client(self.auth['user'], self.auth['passwd'])
res = conn.get_some_data()
assert res.code == 200

Make sure you perform an assert at the end to be sure of your validation.

Felt something is missing? Open an issue and we shall make it clearer =]

2.1. Navigation 9

Validations Engine Documentation, Release 1.0.0

10 Chapter 2. Structure and the engine core concepts

PYTHON MODULE INDEX

v
validations_engine, 8
validations_engine.base_validation_suites_executor,

6
validations_engine.SlackHelper, 6
validations_engine.validations_engine, 7

11

Validations Engine Documentation, Release 1.0.0

12 Python Module Index

INDEX

B
BaseValidationSuitesExecutor (class in valida-

tions_engine.base_validation_suites_executor),
6

build_slack_payload() (valida-
tions_engine.SlackHelper.SlackHelper static
method), 6

G
get_suite_validation_failures_messages()

(validations_engine.base_validation_suites_executor.BaseValidationSuitesExecutor
method), 7

get_suite_validation_has_failures() (valida-
tions_engine.base_validation_suites_executor.BaseValidationSuitesExecutor
method), 7

H
handle_errors() (valida-

tions_engine.validations_engine.ValidationsEngine
method), 7

L
load_validation_suites() (valida-

tions_engine.validations_engine.ValidationsEngine
method), 7

M
module

validations_engine, 8
validations_engine.base_validation_suites_executor,

6
validations_engine.SlackHelper, 6
validations_engine.validations_engine, 7

R
run() (validations_engine.base_validation_suites_executor.BaseValidationSuitesExecutor

method), 7
run_validation_suites() (valida-

tions_engine.validations_engine.ValidationsEngine
method), 7

S
send_slack_errors() (valida-

tions_engine.SlackHelper.SlackHelper static
method), 6

set_connections_auth_params() (valida-
tions_engine.validations_engine.ValidationsEngine
method), 7

set_suites_have_failures() (valida-
tions_engine.validations_engine.ValidationsEngine
method), 7

SLACK_MSG_HEADER (valida-
tions_engine.base_validation_suites_executor.BaseValidationSuitesExecutor
attribute), 7

SlackHelper (class in validations_engine.SlackHelper),
6

V
validations_engine

module, 8
validations_engine.base_validation_suites_executor

module, 6
validations_engine.SlackHelper

module, 6
validations_engine.validations_engine

module, 7
ValidationsEngine (class in valida-

tions_engine.validations_engine), 7

13

	Purpose
	Structure and the engine core concepts
	Navigation
	Getting Started
	Adding a new validation suite
	Discovering Validations Engine

	About
	Motivation

	API Specification
	validations_engine package
	Submodules
	Module contents

	Adding a new validation suite

	Python Module Index
	Index

