

Validations Engine

Made with ❤️ by the Data Engineering team from QuintoAndar [https://github.com/quintoandar/].

Engine for creating and running validation for general purposes

Purpose

This automation engine was conceived to simulate key communication/integration lines between services that compose the
core jobs of the data engineering pipeline at QuintoAndar, to guarantee there is no failures in the pipeline (and early catch eventual failures).
But it can execute validations for general purposes.

Structure and the engine core concepts

This engine is composed by the Executors and the ValidationSuites.

Executors

Executors are responsible for executing all the respective validation suites that inherit them.
A suite can inherit a custom executor or the BaseValidationSuitesExecutor.
The executor may contain default and generic code and tests for a group of suites. For example, we may have one executor
with features for validating a group of Databases and another for validating some APIs.

Validation Suites

A validation suite works like a Python unit test class. Once you define the validation methods (following the name pattern),
these methods will be run by the engine.

Inside the validation suite class, you may implement into the validation methods the validations you want to perform.
You can implement a custom validation inside your suite or if it is a common validation you may want to generalize it
and use a custom executor like DatabaseValidationSuitesExecutor for sharing the same validation among other suites that inherits it.
Every suite must inherit from an executor, in order to be parsed and run. So it should inherit from the
BaseValidationSuitesExecutor or from a custom one (that inherits from the base executor).

The validation_* methods inside the suite and inside the executor classes will run automatically by the validation engine.

Navigation

	Getting Started
	Adding a new validation suite

	Discovering Validations Engine

	About
	Motivation

	API Specification
	validations_engine package

	Adding a new validation suite

Getting Started

Validations Engine depends on Python 3.7.6+.

Python Package Index [https://pypi.org/project/validations-engine/] hosts reference to a pip-installable
module of this library, using it is as straightforward as including it on your project’s requirements.

pip install validations-engine

Or after listing validations-engine in your requirements.txt file:

pip install -r requirements.txt

Adding a new validation suite

Check here the instructions to create a new validation suite.

Discovering Validations Engine

Click on the following links to open the examples [https://github.com/quintoandar/validations-engine/tree/main/examples]:

#1 Example [https://github.com/quintoandar/validations-engine/blob/main/examples/example.py]

About

Motivation

During the daily data engineering pipeline execution, may occur some problems related to:

	Network access (like VPC, peering, etc).

	API failures.

	Database connections failures (access, authentication, networking related errors).

	Failures in Python requirements installing (via init scripts) and its dependencies installing.

	DML errors.

	and the list goes on… 😿🙈.

Eventually, internal modifications in service’s platform (infra, services, etc) can lead to bugs and failures in the ELT daily runs.
Also, eventual external factors (like a lib dependency update) may also lead to such problems. And we definitely cannot
expect that everything will run accordingly on the official daily executions.

It is pretty important therefore to have internal processes to guarantee (as much as we can) that the pipelines will
run without failures.

API Specification

	validations_engine package
	Submodules

	Module contents

validations_engine package

Submodules

Slack communications module.

	
class validations_engine.SlackHelper.SlackHelper

	Bases: object

Slack Helper class.

	
static build_slack_payload(error_messages: List[Tuple[str, str]]) → Dict[str, Dict[str, Any]]

	Builds the message payload from the error messages.

	
static send_slack_errors(error_messages: List[Tuple[str, str]]) → bool

	Sends errors messages to Slack (channels).

	Returns

	flag stating if messages were sent or not

Suites base executor.

	
class validations_engine.base_validation_suites_executor.BaseValidationSuitesExecutor(auth: Optional[Dict[str, Any]] = None)

	Bases: object

Validation suites executors abstract class.

	
SLACK_MSG_HEADER = ''

	

	
get_suite_validation_failures_messages() → List[Tuple[str, str]]

	Return the errors list.

	
get_suite_validation_has_failures() → bool

	Returns the bool state indicating if there were failures.

	
run() → None

	Main method executed by the validation suites (E.g.: FooValidationSuite).

	It will run every method prefixed with validation_ defined in the validation
	suite class. And the default ones defined in the executor class.

Only stops when all validations are finished.

Validations Engine main class.

	
class validations_engine.validations_engine.ValidationsEngine(validations_suites_root_path: str)

	Bases: object

The Validator engine main file.

	This class is responsible for parsing all validation suites and running
	its validation methods individually.

	
handle_errors() → None

	Ensures (raises) a failure in the end of all validations.

	
load_validation_suites(validations_suites_root_path: str) → List[BaseValidationSuitesExecutor]

	Import suites’ modules and loads a list with their classes.

	Get each suite file, imports it as a python module and loads the
	suite class.

	
run_validation_suites() → None

	The main method.

	Runs all validations from Suite classes and raises an error if some
	validation failed.

	
set_connections_auth_params(connections_auth_params: Dict[str, Any]) → None

	Setter of connections_auth_params.

	
set_suites_have_failures(param: bool, messages: Optional[List[str]] = None) → None

	Merges previous state with new one.

Module contents

Top-level package for validations_engine.

Adding a new validation suite

Creating a new validation context (executor)

If you want to create a validation for a new category (like the categories API or Database), you may first create an executor.
The executor must inherit from BaseValidationSuitesExecutor and wrap common validation that validation suites may share.
And this executor must be inherited by each validation suite you create in this context.
E.g.:

from validations_engine.base_validation_suites_executor import BaseValidationSuitesExecutor

class DatabasesValidationSuitesExecutor(BaseValidationSuitesExecutor):

 def __init__(self, auth):
 """
 :param auth: Authentication dictionary with DB auth needed for connecting in your test.
 You should define it after calling instantiating the ValidationsEngine().
 After this, it is automatically filled in this executor by the Validation Engine.
 """
 super().__init__()
 self.auth = auth

 def method_one(self):
 # some code you use in this executor
 pass

 def validation_foo(self):
 # some validation which all the suites of this executor will have
 pass

Creating a new validation suite

If you want to validate something of an existing context, like add validations for a new database type, you may only create a new validation suite file.

	Add the new Validation Suite class file in your validation suites’ root path.

	Inherit it from some executor or from the base executor.

	Create the validations inside each method prefixed with validate_.

E.g.:

imports suppressed
class MyCoolValidationSuite(APIValidationSuitesExecutor):
 # Every suite must inherit a validation suites executor in order to be run.

 def validate_auth(self):
 # checking if the API is authenticating and returning data as expected
 conn = self.api_client(self.auth['user'], self.auth['passwd'])
 res = conn.get_some_data()
 assert res.code == 200

Make sure you perform an assert at the end to be sure of your validation.

Felt something is missing? Open an issue and we shall make it clearer =]

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 validations_engine	

 	
 	
 validations_engine.base_validation_suites_executor	

 	
 	
 validations_engine.SlackHelper	

 	
 	
 validations_engine.validations_engine	

Index

 B
 | G
 | H
 | L
 | M
 | R
 | S
 | V

B

 	
 	BaseValidationSuitesExecutor (class in validations_engine.base_validation_suites_executor)

 	
 	build_slack_payload() (validations_engine.SlackHelper.SlackHelper static method)

G

 	
 	get_suite_validation_failures_messages() (validations_engine.base_validation_suites_executor.BaseValidationSuitesExecutor method)

 	
 	get_suite_validation_has_failures() (validations_engine.base_validation_suites_executor.BaseValidationSuitesExecutor method)

H

 	
 	handle_errors() (validations_engine.validations_engine.ValidationsEngine method)

L

 	
 	load_validation_suites() (validations_engine.validations_engine.ValidationsEngine method)

M

 	
 	
 module

 	validations_engine

 	validations_engine.base_validation_suites_executor

 	validations_engine.SlackHelper

 	validations_engine.validations_engine

R

 	
 	run() (validations_engine.base_validation_suites_executor.BaseValidationSuitesExecutor method)

 	
 	run_validation_suites() (validations_engine.validations_engine.ValidationsEngine method)

S

 	
 	send_slack_errors() (validations_engine.SlackHelper.SlackHelper static method)

 	set_connections_auth_params() (validations_engine.validations_engine.ValidationsEngine method)

 	
 	set_suites_have_failures() (validations_engine.validations_engine.ValidationsEngine method)

 	SLACK_MSG_HEADER (validations_engine.base_validation_suites_executor.BaseValidationSuitesExecutor attribute)

 	SlackHelper (class in validations_engine.SlackHelper)

V

 	
 	
 validations_engine

 	module

 	
 validations_engine.base_validation_suites_executor

 	module

 	
 	
 validations_engine.SlackHelper

 	module

 	
 validations_engine.validations_engine

 	module

 	ValidationsEngine (class in validations_engine.validations_engine)

 nav.xhtml

 Table of Contents

 		
 Validations Engine

 		
 Getting Started

 		
 Adding a new validation suite

 		
 Discovering Validations Engine

 		
 About

 		
 Motivation

 		
 API Specification

 		
 validations_engine package

 		
 Submodules

 		
 Module contents

 		
 Adding a new validation suite

_static/plus.png

_static/file.png

_static/minus.png

